Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 12 of 12 results
1.

Optogenetics for light control of biological systems

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Nat Rev Methods Primers, 21 Jul 2022 DOI: 10.1038/s43586-022-00149-z Link to full text
Abstract: The H2 + H2 system has long been considered a benchmark system for ro-vibrational energy transfer in bimolecular collisions. However, most studies thus far have focused on collisions involving H2 molecules in the ground vibrational level or in the first excited vibrational state. While H2 + H2/HD collisions have received wide attention due to the important role they play in astrophysics, D2 + D2 collisions have received much less attention. Recently, Zhou et al. [ Nat. Chem. 2022, 14, 658-663, DOI: 10.1038/s41557-022-00926-z] examined stereodynamic aspects of rotational energy transfer in collisions of two aligned D2 molecules prepared in the v = 2 vibrational level and j = 2 rotational level. Here, we report quantum calculations of rotational and vibrational energy transfer in collisions of two D2 molecules prepared in vibrational levels up to v = 2 and identify key resonance features that contribute to the angular distribution in the experimental results of Zhou et al. The quantum scattering calculations were performed in full dimensionality and using the rigid-rotor approximation using a recently developed highly accurate six-dimensional potential energy surface for the H4 system that allows descriptions of collisions involving highly vibrationally excited H2 and its isotopologues.
2.

Optogenetic tools for manipulation of cyclic nucleotides, functionally coupled to CNG-channels.

blue bPAC (BlaC) C. elegans in vivo Immediate control of second messengers
Br J Pharmacol, 18 Mar 2021 DOI: 10.1111/bph.15445 Link to full text
Abstract: The cyclic nucleotides cAMP and cGMP are ubiquitous second messengers that regulate numerous biological processes. Malfunctional cNMP signalling is linked to multiple diseases and thus is an important target in pharmaceutical research. The existing optogenetic toolbox in C. elegans is restricted to soluble adenylyl cyclases, the membrane-bound Blastocladiella emersonii CyclOp and hyperpolarising rhodopsins, yet missing are membrane-bound photoactivatable adenylyl cyclases and hyperpolarisers based on K+ -currents.
3.

Potassium channel-based optogenetic silencing.

blue bPAC (BlaC) HEK293 mouse hippocampal slices mouse in vivo ND7/23 primary mouse hippocampal neurons rabbit cardiomyocytes zebrafish in vivo Immediate control of second messengers Neuronal activity control
Nat Commun, 5 Nov 2018 DOI: 10.1038/s41467-018-07038-8 Link to full text
Abstract: Optogenetics enables manipulation of biological processes with light at high spatio-temporal resolution to control the behavior of cells, networks, or even whole animals. In contrast to the performance of excitatory rhodopsins, the effectiveness of inhibitory optogenetic tools is still insufficient. Here we report a two-component optical silencer system comprising photoactivated adenylyl cyclases (PACs) and the small cyclic nucleotide-gated potassium channel SthK. Activation of this 'PAC-K' silencer by brief pulses of low-intensity blue light causes robust and reversible silencing of cardiomyocyte excitation and neuronal firing. In vivo expression of PAC-K in mouse and zebrafish neurons is well tolerated, where blue light inhibits neuronal activity and blocks motor responses. In combination with red-light absorbing channelrhodopsins, the distinct action spectra of PACs allow independent bimodal control of neuronal activity. PAC-K represents a reliable optogenetic silencer with intrinsic amplification for sustained potassium-mediated hyperpolarization, conferring high operational light sensitivity to the cells of interest.
4.

Optogenetic Tools for Subcellular Applications in Neuroscience.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Neuron, 1 Nov 2017 DOI: 10.1016/j.neuron.2017.09.047 Link to full text
Abstract: The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
5.

Unfolding of the C-Terminal Jα Helix in the LOV2 Photoreceptor Domain Observed by Time-Resolved Vibrational Spectroscopy.

blue LOV domains Background
J Phys Chem Lett, 22 Aug 2016 DOI: 10.1021/acs.jpclett.6b01484 Link to full text
Abstract: Light-triggered reactions of biological photoreceptors have gained immense attention for their role as molecular switches in their native organisms and for optogenetic application. The light, oxygen, and voltage 2 (LOV2) sensing domain of plant phototropin binds a C-terminal Jα helix that is docked on a β-sheet and unfolds upon light absorption by the flavin mononucleotide (FMN) chromophore. In this work, the signal transduction pathway of LOV2 from Avena sativa was investigated using time-resolved infrared spectroscopy from picoseconds to microseconds. In D2O buffer, FMN singlet-to-triplet conversion occurs in 2 ns and formation of the covalent cysteinyl-FMN adduct in 10 μs. We observe a two-step unfolding of the Jα helix: The first phase occurs concomitantly with Cys-FMN covalent adduct formation in 10 μs, along with hydrogen-bond rupture of the FMN C4═O with Gln-513, motion of the β-sheet, and an additional helical element. The second phase occurs in approximately 240 μs. The final spectrum at 500 μs is essentially identical to the steady-state light-minus-dark Fourier transform infrared spectrum, indicating that Jα helix unfolding is complete on that time scale.
6.

The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.

blue bPAC (BlaC) CHO-K1 rat hippocampal neurons Xenopus oocytes Immediate control of second messengers
Sci Signal, 11 Aug 2015 DOI: 10.1126/scisignal.aab0611 Link to full text
Abstract: Blastocladiomycota fungi form motile zoospores that are guided by sensory photoreceptors to areas of optimal light conditions. We showed that the microbial rhodopsin of Blastocladiella emersonii is a rhodopsin-guanylyl cyclase (RhGC), a member of a previously uncharacterized rhodopsin class of light-activated enzymes that generate the second messenger cyclic guanosine monophosphate (cGMP). Upon application of a short light flash, recombinant RhGC converted within 8 ms into a signaling state with blue-shifted absorption from which the dark state recovered within 100 ms. When expressed in Xenopus oocytes, Chinese hamster ovary cells, or mammalian neurons, RhGC generated cGMP in response to green light in a light dose-dependent manner on a subsecond time scale. Thus, we propose RhGC as a versatile tool for the optogenetic analysis of cGMP-dependent signaling processes in cell biology and the neurosciences.
7.

Controlling fertilization and cAMP signaling in sperm by optogenetics.

blue bPAC (BlaC) mouse in vivo mouse sperm cells Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Elife, 20 Jan 2015 DOI: 10.7554/elife.05161 Link to full text
Abstract: Optogenetics is a powerful technique to control cellular activity by light. The light-gated Channelrhodopsin has been widely used to study and manipulate neuronal activity in vivo, whereas optogenetic control of second messengers in vivo has not been examined in depth. In this study, we present a transgenic mouse model expressing a photoactivated adenylyl cyclase (bPAC) in sperm. In transgenic sperm, bPAC mimics the action of the endogenous soluble adenylyl cyclase (SACY) that is required for motility and fertilization: light-stimulation rapidly elevates cAMP, accelerates the flagellar beat, and, thereby, changes swimming behavior of sperm. Furthermore, bPAC replaces endogenous adenylyl cyclase activity. In mutant sperm lacking the bicarbonate-stimulated SACY activity, bPAC restored motility after light-stimulation and, thereby, enabled sperm to fertilize oocytes in vitro. We show that optogenetic control of cAMP in vivo allows to non-invasively study cAMP signaling, to control behaviors of single cells, and to restore a fundamental biological process such as fertilization.
8.

Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase.

red LAPD CHO in vitro zebrafish in vivo Immediate control of second messengers
Proc Natl Acad Sci USA, 2 Jun 2014 DOI: 10.1073/pnas.1321600111 Link to full text
Abstract: Sensory photoreceptors elicit vital physiological adaptations in response to incident light. As light-regulated actuators, photoreceptors underpin optogenetics, which denotes the noninvasive, reversible, and spatiotemporally precise perturbation by light of living cells and organisms. Of particular versatility, naturally occurring photoactivated adenylate cyclases promote the synthesis of the second messenger cAMP under blue light. Here, we have engineered a light-activated phosphodiesterase (LAPD) with complementary light sensitivity and catalytic activity by recombining the photosensor module of Deinococcus radiodurans bacterial phytochrome with the effector module of Homo sapiens phosphodiesterase 2A. Upon red-light absorption, LAPD up-regulates hydrolysis of cAMP and cGMP by up to sixfold, whereas far-red light can be used to down-regulate activity. LAPD also mediates light-activated cAMP and cGMP hydrolysis in eukaryotic cell cultures and in zebrafish embryos; crucially, the biliverdin chromophore of LAPD is available endogenously and does not need to be provided exogenously. LAPD thus establishes a new optogenetic modality that permits light control over diverse cAMP/cGMP-mediated physiological processes. Because red light penetrates tissue more deeply than light of shorter wavelengths, LAPD appears particularly attractive for studies in living organisms.
9.

Photo-dynamics of BLUF domain containing adenylyl cyclase NgPAC3 from the amoeboflagellate Naegleria gruberi NEG-M strain.

blue BLUF domains Background
J Photochem Photobiol A, 21 Apr 2014 DOI: 10.1016/j.jphotochem.2014.04.017 Link to full text
Abstract: The absorption and emission spectroscopic behavior of the photo-activated adenylyl cyclase NgPAC3 from the amoeboflagellate Naegleria gruberi NEG-M strain was studied. The flavin cofactor was found to be partly fully oxidized and partly fully reduced. The typical BLUF domain (BLUF = Blue Light sensor Using Flavin) oxidized flavin absorption photo-cycle dynamics with about 14 nm flavin absorption red-shift in the signaling state was observed. The quantum efficiency of signaling state formation was determined to be s = 0.66 ± 0.03. A bi-exponential signaling state recovery to the dark-adapted receptor state was observed with the time constants rec,f = 275 s and rec,sl = 45 min. The thermal irreversible protein unfolding was studied and an apparent protein melting temperature of ϑm ≈ 50 ◦C was found. The photodynamic behavior of NgPAC3 is compared with the behavior of the previously investigated photo-activated cyclases NgPAC1 (nPAC) and NgPAC2 from the same N. gruberi NEG-M strain. Purified recombinant NgPAC3 showed light-gated adenylate cyclase activity upon illumination with blue light. Its cyclase activity is compared with those of NgPAC1 and NgPAC2.
10.

Photo-dynamics and thermal behavior of the BLUF domain containing adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain.

blue BLUF domains Background
Chem Phys, 20 Dec 2012 DOI: 10.1016/j.chemphys.2012.12.015 Link to full text
Abstract: The absorption and emission spectroscopic behavior of the photo-activated adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain was studied in the dark, during blue-light exposure and after blue-light exposure. The typical BLUF domain (BLUF = Blue Light sensor Using Flavin) flavin cofactor absorption and fluorescence photo-cycle dynamics was observed. For fresh samples a reversible concentration dependent protein oligomerization occurred showing up in free flavin binding and protein color center formation with increasing protein concentration. Thermal and temporal irreversible protein unfolding with loss of BLUF domain activity was investigated. Temperature dependent protein melting times and the apparent protein melting temperature were determined. The photodynamic behavior of the NgPAC2 is compared with the behavior of the previously investigated photo-activated cyclase NgPAC1 (nPAC) from the same N. gruberi NEG-M strain.
11.

Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa.

blue bPAC (BlaC) euPAC D. melanogaster in vivo E. coli in vitro rat hippocampal neurons Xenopus oocytes Immediate control of second messengers Neuronal activity control
J Biol Chem, 28 Oct 2010 DOI: 10.1074/jbc.m110.185496 Link to full text
Abstract: The recent success of channelrhodopsin in optogenetics has also caused increasing interest in enzymes that are directly activated by light. We have identified in the genome of the bacterium Beggiatoa a DNA sequence encoding an adenylyl cyclase directly linked to a BLUF (blue light receptor using FAD) type light sensor domain. In Escherichia coli and Xenopus oocytes, this photoactivated adenylyl cyclase (bPAC) showed cyclase activity that is low in darkness but increased 300-fold in the light. This enzymatic activity decays thermally within 20 s in parallel with the red-shifted BLUF photointermediate. bPAC is well expressed in pyramidal neurons and, in combination with cyclic nucleotide gated channels, causes efficient light-induced depolarization. In the Drosophila central nervous system, bPAC mediates light-dependent cAMP increase and behavioral changes in freely moving animals. bPAC seems a perfect optogenetic tool for light modulation of cAMP in neuronal cells and tissues and for studying cAMP-dependent processes in live animals.
12.

Fast manipulation of cellular cAMP level by light in vivo.

blue euPAC D. melanogaster in vivo HEK293 Xenopus oocytes Immediate control of second messengers Neuronal activity control
Nat Methods, 26 Nov 2006 DOI: 10.1038/nmeth975 Link to full text
Abstract: The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACalpha and PACbeta. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells.
Submit a new publication to our database